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Figure 1: Conformal deformation of a giraffe with sharp bends at neck and legs. Original model (left) and three deformed versions. 

Abstract 

Conformal maps are considered very desirable for planar defor-
mation applications, since they allow only local rotations and 
scale, avoiding shear and other visually disturbing distortions of 
local detail. Conformal maps are also orientation-preserving C∞ 
diffeomorphisms, meaning they are extremely smooth and prevent 
unacceptable “foldovers” in the plane. Unfortunately, these maps 
are also notoriously difficult to control, so working with them in 
an interactive animation scenario to achieve specific effects is a 
significant challenge, sometimes even impossible. 

We describe a novel 2D shape deformation system which gene-
rates conformal maps, yet provides the user a large degree of con-
trol over the result. For example, it allows discontinuities at user-
specified boundary points, so true “bends” can be introduced into 
the deformation. It also allows the prescription of angular con-
straints at corners of the target image. Combining these provides 
for a very effective user experience. At the heart of our method is 
a very natural differential shape representation for conformal 
maps, using so-called “conformal factors” and “angular factors”, 
which allow more intuitive control compared to representation in 
the usual spatial domain. Beyond deforming a given shape into a 
new one at each key frame, our method also provides the ability to 
interpolate between shapes in a very natural way, such that also 
the intermediate deformations are conformal. 

Our method is extremely efficient: it requires only the solution of 
a small dense linear system at preprocess time and a matrix-vector 
multiplication during runtime (which can be implemented on a 
modern GPU), thus the deformations, even on extremely large 
images, may be performed in real-time. 

1 Introduction 

Planar shape deformation and animation are fundamental applica-
tions in computer graphics. Despite the voluminous literature on 
the subject, a perfect solution still does not exist. The main chal-
lenge is to be able to create high quality deformations of a given 
2D shape with as little user input as possible without losing con-
trol over the result. In other words, an ideal deformation system 
should allow the user intervention when it is required but infer all 
the missing data automatically. Once the user fixes a small set of 
constraints, the system should find the best deformed shape that 
satisfies these constraints. What is considered best depends, of 
course, on the application. Research in recent years has focused 
on finding deformations that best preserve the fine details of the 
source shape. This means that the deformation should be smooth, 
avoid unnecessary variations, and locally should resemble only 
rotation and possibly uniform scale. Shear and non-uniform scale 
should be avoided, and “foldovers” of the image should not be 
allowed under any circumstances. These desirable properties are 
precisely those of conformal maps - injective harmonic maps 
whose two components satisfy the Cauchy-Riemann equations 
(which mean that their gradients are perpendicular to each other 
and have the same magnitude). They preserve the angles between 
intersecting curves and also orientation, having positive Jacobian 
(determinant) throughout the domain, thus are ideal for shape 
deformation. 

Conformal maps are central to complex function theory [Ahlfors 
1979] and have been the subject of intense study for centuries. 
Most well-behaved complex functions are holomorphic, and with 
the additional requirement that their derivative does not vanish, 
they become conformal. At first glance, this would seem to imply 
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that there are plenty of conformal maps, so it should not be too 
difficult to generate one satisfying some reasonable user-supplied 
constraints. In fact, the celebrated Riemann mapping theorem 
[Ahlfors 1979, Ch. 6] guarantees that there exists a (unique up to 
a few degrees of freedom) conformal map between any two simp-
ly-connected regions of the plane. However, the reality of work-
ing with conformal maps is quite different. It is notoriously diffi-
cult to generate the Riemann maps, and when the boundaries of 
the two regions are significantly different, the conformal map 
between the two can be surprisingly complex, with enormous 
differences in scale being quite common. It is even more difficult 
to generate conformal maps when more sophisticated constraints 
are present. For example, it is impossible to impose a correspon-
dence between more than three pairs of points along the two re-
spective boundaries. Thus controlling conformal maps in a natural 
way to achieve desired results is quite difficult. This is the main 
problem we address in this paper. 

A common approach to generating deformations in practice is to 
search for the solution within some meaningful subspace of the 
deformation space. Finding the most suitable subspace is the main 
challenge. A very popular approach is to use a fixed set of basis 
functions (depending only on the source shape), also known as 
barycentric coordinates, and then the deformation is expressed as 
a linear combination of these basis functions. Possible choices are 
mean-value coordinates [Floater 2003] or harmonic coordinates 
[Joshi et al. 2007]. Recently, Weber et al. [2009] suggested using 
holomorphic basis functions since they may lead to conformal 
maps. Deformation methods based on barycentric coordinates 
usually lead to efficient algorithms since the basis functions can 
be computed in a preprocess step. This is the approach we use in 
this paper. 

The input to our algorithm is a polygonal boundary curve enclos-
ing a simply connected planar region and a small set of corner 
points along the boundary. During the animation session, the user 
controls the target shape by specifying the orientation of the tan-
gent vector at any boundary point. At a corner point, two distinct 
tangents should be specified, giving the user the freedom to 
change the corner angle as well as its orientation. This gives the 
user a large amount of control over the behavior of the deforma-
tion. Moreover, the resulting deformation is always a conformal 
map which satisfies the user constraints exactly.  

Despite it not being possible, in general, to generate a conformal 
map that maps one planar region to another with an exact pre-
scription of the boundary behavior, as we show in the next sec-
tions, there always exists a conformal map that follows an exact 
angle prescription along the boundary. We provide the theory and 
the exact recipe to efficiently compute this conformal map using a 
new type of barycentric coordinates, which we call Hilbert coor-
dinates. 

2 Previous Work 

In the 2D domain, the subject of this paper, the deformation prob-
lem boils down to bounding some region of the plane (usually a 
portion of an image) by a polygonal source “cage” P, and, using a 
set of controls, deform this to another target planar polygon Q. In 
the simplest scenario, we would like to generate some well-
behaved mapping between the interior of P and the interior of Q. 
The easiest way to achieve this is through barycentric coordinates, 
which express the coordinates of any x in the interior of P as a 
linear combination of the coordinates of the vertices of P. The 
image of x is then defined to be the same linear combination of 
the vertices of Q. Over the years, many recipes for barycentric 

coordinates have been proposed, and we mention here just the 
most well-known: the three-point family [Floater et al. 2006] 
(which includes the cotangent, mean-value and Wachspress coor-
dinates), the harmonic coordinates [Joshi et al. 2007] and the 
maximum entropy coordinates [Hormann and Sukumar, 2008]. 
Joshi et al. define harmonic coordinates using a discrete triangula-
tion of the interior of P, and generate a discrete harmonic map 
between the interior of P and Q. All these mappings distort P as 
much as is needed in order to fit Q exactly, sometimes yielding 
quite visually-unsatisfying results. If the exact boundary mapping 
between P and Q is relaxed, the mapping being controlled only by 
a small set of “positional constraints”, it is possible to optimize 
the mapping to contain less shear effects and as much local simi-
larities or rigid transformations (which are considered less distort-
ing) as possible. In the discrete world, these are sometimes called 
the “As-Similar-As-Possible” (ASAP) [Levy et al. 2002; Schaefer 
et al. 2004; Igarashi et al. 2005; Karni et al. 2009] or “As-Rigid-
As-Possible” (ARAP) [Karni et al. 2009] mappings.  

Realizing that conformal mappings are very desirable in the de-
formation context, more recent work has restricted the mappings 
generated to be continuous holomorphic mappings. Thus P will 
typically not be mapped exactly to Q, rather close to it. These 
mappings may also be generated using barycentric coordinate 
functions, such as the Green coordinates [Lipman et al. 2008], and 
the equivalent Cauchy coordinates [Weber et al. 2009], which 
may be controlled directly through the target polygon Q, or 
through a more intuitive “point-to-point” user interface. Unfortu-
nately, while better than the more distorted traditional deforma-
tions, they are still quite difficult to control, and foldovers are not 
eliminated. 

3 Contributions 

Our main contribution is a novel 2D shape deformation system 
which generates controllable conformal maps. We introduce the 
notion of singular points to 2D shape deformation which leads to 
the ability to generate more realistic deformations compared to 
existing methods. To the best of our knowledge, this is also the 
first deformation method that guarantees that the Jacobian of the 
map will not vanish, thus preventing foldovers completely. This 
approach also leads to a simple way to interpolate shapes in a 
natural way such that the intermediate deformations are also con-
formal.  

From a technical point of view, we derive a new type of complex 
barycentric coordinates which are a generalization of the Cauchy 
coordinates [Weber et al. 2009], and show an interesting connec-
tion between Cauchy coordinates and harmonic coordinates 
which, in turn, leads to a an elegant computational method for 
harmonic coordinates. We describe the Hilbert barycentric coor-
dinates which leads to an efficient computation of the so-called 
Hilbert transform. This, in turn, allows us to construct conformal 
maps via their derivatives. The efficiency of our deformation 
method is comparable to methods based on other barycentric 
coordinates. This permits a very fast deformation algorithm which 
can be easily implemented on a GPU.  

4 Conformal Shape Deformation 

Real-valued barycentric coordinates are affine-invariant. Until 
recently this ability was considered an advantage. This was chal-
lenged by Lipman et al. [2008] who demonstrated that when ba-
rycentric coordinates are used for deformation, affine transforma-
tions introduce shear which in turn destroys the fine details of the 
shape. To avoid this, Lipman et al. [2008] suggested blending the 
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cage normals using another set of barycentric coordinates such 
that the linear combination of vertices augmented with linear 
combination of normals is no longer affine-invariant. More re-
cently, Weber et al. [2009] extended this idea by allowing the 
barycentric coordinates to be complex-valued functions. Since 
holomorphic functions form a linear subspace, complex holomor-
phic barycentric coordinates leads to holomorphic deformations. 
However, a holomorphic deformation doesn’t always mean the 
map is conformal since the derivative of the function may vanish  

inside the domain. This leads to local foldovers which may even 
cause the winding number of the boundary curve to change. Such 
visual artifacts (see Fig. 2) are undesirable and in this work we 
provide a concise way to prevent them. 

Complex barycentric coordinates (when they are holomorphic) 
have the advantage of being detail preserving, however, this 
comes with a price. It is impossible to achieve the Lagrange prop-
erty i.e., to interpolate the target cage, since it is not possible, in 
general, to prescribe the boundary mapping of a conformal map. 
This does not contradict Riemann’s conformal mapping theorem 
since that theorem only guarantees that the source domain will be 
mapped onto the target domain, with no possibility to influence 
the mapping between the two boundaries. At first glance, the fact 
that interpolation cannot be achieved using complex barycentric 
coordinates is disappointing. However, careful examination shows 
that actually none of the existing real-valued barycentric coordi-
nates has the “containment” property as really expected by a user 
of an interaction deformation tool, namely that f() does not 
“spill out” of f().When the target cage is convex (even if the 
source cage is not), the Rado-Kneser-Choquet theorem [Duren 
2004, Ch. 3] states that the corresponding harmonic map will be a 
bijection. However, when the target cage is not convex, even 
harmonic maps cannot guarantee that the Jacobian of the mapping 
will have positive determinant. This means that even though the 
target shape interpolates the target cage, some portions of the 
source region may “spill” outside the target region. Thus, the 
outer boundary of the target region does not interpolate the target 
cage (see Fig. 2). In fact, we do not know of barycentric coordi-
nates (real or complex) that guarantee a bijective mapping (not 
necessarily harmonic or conformal) between arbitrary source and 
target cages. Whether it is possible to create such coordinates is 
an open question. 

In light of this unfortunate situation, we now show how to relax 
the boundary interpolation requirement, in order to be able to 
construct conformal deformations which are more appealing than 
deformations that can be achieved using current complex barycen-

tric coordinates. Instead of prescribing the exact boundary map-
ping at each point along the edges of the cage we will prescribe 
only the angular change at each point along the boundary. As we 
will see next, this can be achieved exactly. 

The Jacobian of deformations achieved by real-valued barycentric 
coordinates can easily vanish or even be negative, resulting in 
local foldovers. Using complex holomorphic barycentric coordi-
nates guarantees that the Jacobian of the mapping (the absolute 
value of the first complex derivative) is non-negative (since it is a 
similarity transformation). Our method is superior to that in the 
sense that it guarantees that the Jacobian is strictly positive inside 
the domain. 

The key to success is the use of a representation of conformal 
maps that always exists and is unique. The representation should 
be minimal in the sense that it should not contain any redundant 
information yet still contain all the information required to uni-
quely reconstruct the deformed shape. The representation we use 
forms a linear subspace, namely that a linear combination of two 
valid shape representations is also a valid shape representation. 
By doing so, we can reduce the optimization problem (of finding 
a particular conformal map) to finding a particular shape represen-
tation within the linear subspace. This leads to an efficient and 
simple deformation algorithm which has some provable shape- 
preserving properties. 

4.1 Shape Representation 

Given a complex mapping f, consider the following function: 

 Log( ) Log( ) Arg( )f f i f     

This log derivative of f encodes two local geometric properties of 
f: 1) The conformal factor, Log(| f ʹ(z)|),

 
describes the local scale 

change induced by f, and 2) the angular factor, Arg( f ʹ(z)), de-
scribes the local orientation change induced by f at z. As we will 
soon see, given one of these two functions (conformal factor or 
angular factor), satisfying some mild conditions on the boundary 
of a domain, it is possible to uniquely recover the conformal map 
having that boundary behavior up to some global transformation. 
It is not possible to prescribe both functions.  

Thus our representation of choice for a conformal map f of a giv-
en simply connected 2D domain  will be its angular factor on 
 - a piecewise-smooth real-valued scalar function defined on 
, which we denote by θ(t) when parameterized by arc length. 
More specifically, given a conformal map f (z) of a source region 
, define: 

 

Figure 2: Deforming a square. (left to right) Original image enclosed by a cage of 4 vertices and resulting deformations controlled by  
identical target cages, generated by a number of methods: harmonic coordinates (note how the image ”spills” outside the target cage), 
regular Cauchy coordinates (note how the winding number of the boundary curve has changed from 2π to 4π and the derivative vanishes at 
a point inside the loop), Szegö coordinates (which tries to map closer to the cage), our deformation using exact angle prescription at the 
corners results in a bijective conformal map without any foldovers. 
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         ( ) Im Log Arg( ( ))z f z f z     

With slight abuse of notation, the conformal shape representation 
of f is now defined as the parameterized version of θ on : 

    
( )

lim , , ( )
z w t

t z z w t 


    (1) 

where w(t) is the point on  corresponding to parameter t. θ(t) 
has the geometric interpretation as the local change in tangent 
direction of f on . 

The derivative of a holomorphic function f is also holomorphic. 
Since f is conformal its derivative does not vanish, hence the mul-
tivalued Log( f ʹ(z)) function is also holomorphic. Furthermore, 
since the real and imaginary parts of any holomorphic functions 
are harmonic functions, it follows that θ(z) is harmonic on Ω. 
Hence, the limit (1) always exists except at some finite number of 
points.  

4.2 Shape Reconstruction 

A harmonic function v(x,y) is said to be the (harmonic) conjugate 
of the harmonic function u(x,y) defined on some open domain 
ΩؿԹ2 if and only if u and v satisfy the Cauchy-Riemann equa-
tions in Ω. Alternatively, v is the harmonic conjugate of u if and 
only if f(z)=f(x+iy)=u(x,y)+iv(x,y) is holomorphic on Ω. Any har-
monic function admits a harmonic conjugate whenever its domain 
is simply connected, and it is unique up to an additive constant. 

Given the angular factor θ(t) defined on the boundary of a simply 
connected domain , it is always possible to reconstruct a con-
formal map f which has angular factor θ on , and is unique up 
to translation and scale, using a two step process. In the first step 
we construct the derivative f ʹ. In the second step we seek a func-
tion f  having that derivative. 

Existence: Given the function θ(t) on , it is always possible to 
solve the Dirichlet problem, extending θ(t) harmonically into the 
interior of Ω, thus obtaining θ(z). Since Ω is simply connected, 
θ(z) always admits a harmonic conjugate function, denoted by 
ϕ(z). It is then possible to construct the holomorphic function 
g(z)=ϕ(z)+iθ(z). Since the complex exponential function is holo-
morphic, so is exp(g( z)). A consequence of Cauchy’s integral 
theorem is that if a function is holomorphic in a simply connected 
domain it always has an antiderivative, which means that 
exp(g( z)) is the derivative of some holomorphic function f. In 
other words f ʹ=exp(g( z)). Since f ʹ cannot vanish, f is conformal. 

Uniqueness: Assume that two conformal maps f1 and f2 have the 
same angular factor θ(t) on the boundary. Since the derivatives f 1́  
and f 2́  cannot vanish, Log( f 1́ )=ϕ1+iθ1 and Log( f 2́ )=ϕ2+iθ2 are 
holomorphic. It follows that θ1 and θ2 are harmonic functions. The 
uniqueness of the solution to the Dirichlet problem and the fact 
that θ1 and θ2 coincide on the boundary implies that θ1=θ2. Since 
both ϕ1 and ϕ2 are harmonic conjugate to θ1=θ2, this means that 
ϕ1=ϕ2+k where k is a real scalar. It follows that f 1́ =exp(ϕ1+iθ1)= 
exp(ϕ2+k+iθ1)=exp(k)exp(ϕ2+iθ2)=exp(k) f 2́ . We conclude that f 1́  
and f 2́  differ only by scale, thus f1 and f2 differ only by scale and 
translation.  

This shows that there is a one-to-one correspondence between 
conformal maps of a given simply connected domain Ω and real-
valued functions defined on . This greatly simplifies the task of 
searching for a particular conformal map since we may restrict 
our search to the low-dimensional linear subspace of real func-
tions defined on the boundary of the domain. 

In order to reconstruct a conformal map from its representation 
θ(t) in practice, we will need efficient techniques for finding a 
harmonic conjugate function and reconstructing a holomorphic 
function from its derivative. These will be described in the follow-
ing sections. 

4.3 Shape Interpolation 

The process of animation creation consists of several steps. The 
animator selects a particular point in time, poses and deforms the 
objects in the scene, and sets a keyframe. The animator then 
“plays” the animation, which in turn deforms the objects in the 
scene by interpolating the shapes between each two consecutive 
keyframes. The animator then repeats this process in order to 
correct and refine the animation. This is a tedious process and a 
good animation tool strives to minimize the manual effort needed. 

Our conformal shape deformation framework has an inherent 
ability to interpolate shapes in a shape-preserving way. Achieving 
that using our shape representation is very simple. Given two (or 
more) deformed shapes A and B, we simply blend the shape repre-
sentations of A and B in a linear manner to obtain a new shape 
representation: 

      (1 )C A Bt t t       

such that μ[0,1] is a parameter that controls the interpolation. 
The same arguments that allowed the successful reconstruction of 
a conformal map from θA(t) and θB(t) can be applied to θC(t). This 
leads to a very simple and efficient algorithm for shape interpola-
tion with some guaranteed properties. The deformations obtained 
using our method are very natural, avoid local intersections and 
are conformal everywhere. This is demonstrated in Fig. 3 but even 
more so in the accompanying video. In contrast to naïve linear 
morphing methods, which operate directly in the spatial domain, 
no shrinkage effects occur and the overall boundary length and 
shape area is nicely preserved (when it is equal in A and B). Also, 
as opposed to other interpolation methods which are limited to 
rotations of up to 180 degrees, our method is capable of interpo-
lating shapes which undergo arbitrarily large rotations (even much 
larger than 2) between shapes. 

Figure 3: Deformation and interpolation: (top row) Regular 
Cauchy coordinates. Note the shrinkage and rounding of the legs. 
(bottom row) Our method. Note the sharp bend in elbow and knee.  

5 Cauchy Coordinates 

Since planar deformations may be viewed as a function from the 
complex plane to itself, it is advantageous to develop the neces-
sary theory in the complex plane. We start by reviewing some 
basic facts from complex function theory. Consider the following 
complex function of two variables: 

μ=1 

μ=0.5 μ=1 μ=0

μ=0 μ=0.5  

78:4       •       O. Weber et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 78, Publication date: July 2010.



 

 1 1
( , )

2
C w z

i w z


 
 

called the Cauchy kernel. The Cauchy transform of a function f - a 
piecewise smooth function defined on the boundary of Ω - a re-
gion of the complex plane - is defined as the following complex 
boundary integral [Bell 1992], producing a new function g on Ω, 
as illustrated in Fig. 4: 

 1 ( )
( ) ( , ) ( )

2

f w
g z C w z f w dw dw

i w z 

 
  

W W
    (2) 

 

Figure 4: Continuous planar mapping from Ω to g(Ω) generated 
by the Cauchy transform of f(Ω). If f is not holomorphic then 
g(Ω)  f(Ω). 

The Cauchy transform has various desirable properties. One is 
that, under mild assumptions on f, g is always holomorphic on Ω 
[Bell 1992, Theorem 3.1]. Hence, when using this transform in 
the context of planar shape deformation, if the derivative of f does 
not vanish, the mapping will be conformal. Specifically, the 
Cauchy transform reproduces any holomorphic function from its 
boundary values. Unfortunately, as Fig. 4 illustrates, the Cauchy 
transform does not possess the interpolation property, namely in 
general f(w) ≠ g(w) on Ω if f is not holomorphic. This is not sur-
prising since it is well known that (in contrast to harmonic maps), 
in general, it is impossible to generate a conformal map while 
prescribing its exact behavior on the boundary. 

5.1 Regular Cauchy Coordinates 

Complex barycentric coordinates were introduced by Weber et al. 
[2009] who allowed barycentric coordinates, which are tradition-
ally real-valued basis functions, to assume complex values. When 
the basis functions are holomorphic, their linear combinations, 
using complex coefficients, may be used to generate detail pre-
serving deformations of a 2D region. Weber et al. [2009] describe 
several recipes for such complex barycentric coordinates, the most 
fundamental being the Cauchy coordinates, based on the Cauchy 
transform (2) described above, which were proved to be equiva-
lent to the 2D version of the Green coordinates [Lipman et al. 
2008]. The Cauchy coordinates were derived by discretizing Ω 
into a set of straight lines, namely a polygon (the so-called cage), 
reducing the integral (2) to: 

 

1

1 ( )
( )

2
j

n

j e

f w
g z dw

i w z


    (3) 

Under the assumption that f is linear on each edge and continuous 
at the cage vertices, the integral (3) has a closed-form expression 
leading to an elegant formula for the (regular) Cauchy coordinate 
function Cj(z) at vertex j (see Fig. 5, left, for the exact notations): 

1 1 1

1 1 1

1
( ) ( ) ( ) log log

2

n
j j j j

j j j
j j j j j

B B B B
g z C z f C z

i A B A B
  

  

    
               
  

 where n is the number of vertices of the cage and fj is the value of 
f at the jth vertex. Note that the Cauchy coordinates Cj(z) are not 
defined on Ω, however the limit, as z approaches Ω, exists and 
the function is well behaved. 

Conformal maps are angle preserving, however, the boundary 
curve is not considered to be part of the domain. For example, 
consider a conformal map f of a square to a disk, where it is clear 
that the boundary angles are changed. Examining θ(z)=Log(| f ʹ(z)|) 
on the boundary will reveal that the function is not continuous at 
the corners of the square. 

The Cauchy transform spans the entire linear space of holomor-
phic functions. However, its discretized version, defined in (3), 
which we use in order to approximate the holomorphic function 
θ(z), spans only an n dimensional subspace of the holomorphic 
functions. It turns out that this subspace is relatively limited, for 
two main reasons. First, the Cauchy basis functions do not contain 
any singularity. They vary smoothly everywhere, even in the vi-
cinity of the cage vertices. Since any linear combination will inhe-
rit the properties of the basis functions, it is not possible to proper-
ly express near-singular holomorphic functions. In particular, it 
cannot support changes in angle at the cage vertices. The second 
reason is due to the implicit assumption that f behaves linearly on 
the polygonal edges. Most holomorphic functions behave quite 
differently and a linear approximation is just not good enough. 

5.2 Generalized Cauchy Coordinates 

We now show how to extend the regular Cauchy coordinates in 
two ways. First, we allow f to have quadratic rather than linear 
behavior on each edge. Second, and most important, we allow f to 
have two distinct values at each singular vertex (a subset of the 
cage vertices), introducing a discontinuity for f at the vertex if the 
values are different. These two properties are achieved by pre-
scribing three values for f on the edge Aj+1: fj

+, fj
c and fj+1

- (see Fig. 
5, right) such that: 

1
1 1( ), , ( )

2
j jc

j j j j j

z z
f f z f f f f z   

 

 
   

 
 

Given these, f can be expressed on the edge Aj+1 as follows: 

   

 

 

2 2
1 1 12

1

2
1 12

1

1 2 2
1 12

1

2 3

4 4 4 4

2 3

j
j j j j j

j

c
j

j j j j
j

j
j j j j j
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Figure 5:  
Cauchy coordinate notations. 
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The next step is to plug f into (3) and evaluate the integral. The 
derivation is long and technical and is omitted here for brevity. 
Fortunately, as with the regular Cauchy coordinates, the integral 
has a closed-form solution which gives rise to the generalized 
Cauchy coordinates: 
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While the number of regular Cauchy coordinate functions is n 
(one coordinate for each vertex), here we have one coordinate 
function for each edge (CE ) and an additional two coordinate 
functions (CV - and  CV +) for each vertex, resulting in 3n coordi-
nate functions. Finally, the generalized discrete Cauchy transform 
is: 

 

 

 
1

( ) ( ) ( ) ( )
n

c
j j j j j j

j

g z CE z f CV z f CV z f   



  
 

It is important to note that even though the basis functions are 
bounded holomorphic functions at any point inside Ω, the limit of 
CVj

-(z) and CVj
+(z) at the vertex zj does not exist, rather has a 

logarithmic singularity there. The singularity drastically improves 
the expressive power of the discrete Cauchy transform, and we 
refer to this as the discontinuous case. If discontinuity is not 
needed (i.e., we assume that fj

+=fj
-), it is possible to reduce the 

number of basis functions by combining the two coordinates at 
each vertex: 

( ) ( ) ( )j j jCV z CV z CV z    

In this case the total number of basis functions is reduced to 2n 
and the transform has the following form, which we refer to as the 
continuous case: 

  
1

( ) ( ) ( )
n

c
j j j j

j

g z CV z f CE z f


   

Note that in this case the limit of CVj(z) at the vertices exists as in 
the regular Cauchy coordinates. Furthermore, if the values at the 
mid-edges equal the average of the values at the edge endpoints, 
i.e. fj

c = ( fj+1
- + fj

+) / 2, the generalized Cauchy coordinates will re-
duce to regular Cauchy coordinates. Note also that generalized 
Cauchy coordinates reproduce both linear and quadratic functions.  

Fig. 6 shows a visualization of the real and imaginary parts of the 
generalized Cauchy coordinates for a non-convex polygon. 

6 Dirichlet Problems and Hilbert Transforms 

In Section 4.2 we explained how to reconstruct a conformal map 
from its shape representation (prescribed angular factor on the 
boundary). This required the solution of a Dirichlet problem and 
the computation of a harmonic conjugate function. In this section, 
we describe an efficient, elegant and accurate numerical method 
for such computations. 

The operator that takes a function u to its harmonic conjugate 
function v is the Hilbert transform. The classic definition of the 
Hilbert transform operates on real-valued functions of a single 
real variable, however, for our applications we prefer to use an 
alternative definition where u and v are real-valued functions of a 
single complex variable defined on the upper part of the complex 
plane such that the transform is applied to their restriction to the 
real axis. This is equivalent since it is always possible to uniquely 
extend a real-valued function defined on the real axis to be har-
monic on the upper complex plane. Once the extended harmonic 
function is found, it is possible to find its harmonic conjugate and 
again, its restriction to the real axis is considered as the trans-
formed real-valued function.  

 

 
Figure 6: Visualization of the generalized Cauchy coordinates for 
the marked vertex and edge. 

The same logic can be used to define the Hilbert transform on 
more general domains. For a simply connected domain Ω, consid-
er the Hilbert transform [Bell 1992] as an operator that takes a 
real-valued function u(s) on Ω to the holomorphic function 
࣢ (z)=u+iv on Ω. The transform always exists and is unique up to 
additive imaginary constant. However, in general, it does not 
possess a closed-form expression and computing it requires some 
effort. 

The Boundary Element Method (BEM) [Kythe 1995] is a numeri-
cal computational method of solving linear partial differential 
equations such as Laplace’s equation. The main idea is to formu-
late the problem as a boundary integral equation and then discret-
ize the boundary into finite elements and approximate the equa-
tion as a linear combination of a set of basis functions with un-
known coefficients. The coefficients are obtained as a solution to 
a dense linear system. Once the coefficients are found, the solu-
tion can be evaluated at any arbitrary point inside the domain. In 
contrast to the Finite Element Methods (FEM), BEM is based on 
discretization of the boundary alone and avoids discretization of 
the entire domain. The advantage is that the complexity of the 
boundary, which dictates the complexity of the solution, is de-
coupled from the complexity of the domain. The Complex Varia-
ble Boundary Element Method (CVBEM) [Hromadka et al. 1987] 
is a variant of BEM for solving two dimensional problems based 
on complex numbers. An advantage of CVBEM over BEM is that 
the derivation of the boundary integrals is done using complex 

Re(CV -(z)) Re(CV +(z)) Re(CE(z)) 

Im(CE(z)) Im(CV -(z)) Im(CV +(z)) 
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analysis which greatly simplifies the derivation and leads to 
closed-form expressions. But more importantly, as we will elabo-
rate on later, this technique is more natural if our ultimate goal is 
to construct dual pairs of harmonic functions (which together 
form a holomorphic complex function). We now show how 
CVBEM combined with our generalized Cauchy coordinates 
leads to an efficient and elegant method for the computation of the 
Hilbert transform. 

6.1 The Dirichlet Problem 

Given the values u(s) of a function on , we want to solve the 
Dirichlet problem - find a harmonic extension u(z) to  preserv-
ing the given boundary values. Once u(z) is found we want to find 
its harmonic conjugate function v(z). As we shall see next, the two 
problems can be solved simultaneously. 

Since the real and imaginary parts of any holomorphic function 
g(z) are harmonic and since the Cauchy transform spans the entire 
space of holomorphic functions, it follows that any harmonic 
function h may be expressed as: 

   1 ( )
( ) Re ( ) Re

2

f w
h z g z dw

i w z 

 
    

  (4) 

for some complex f. The following error functional measures the 
difference on  between some arbitrary harmonic function h(z) 
and the prescribed boundary conditions u(s): 

    2
( ) ( ) ( )Err h z u s h s ds



   (5) 

We would like to find the complex function f defined on  that 
minimizes this error. Note that there always exists a function f 
which produces zero error since the Dirichlet problem always has 
a solution. To solve the optimization problem in practice we subs-
titute the continuous Cauchy transform with the finite-
dimensional discrete transform 1

( ) ( )
s

j jj
g z C z f


  and approximate 

the integral in (5) as a sum over a k-sampling of . Denoting the 
generalized Cauchy coordinates by Cj(z)=φj(z)+iψj(z)  and the 
complex coefficients by fj = fj

x+i fj
y, the optimization problem be-

comes: 

 

 
 

1

2

1

argmin ( )
s

j j

k

i i
if

u h w




  (6) 

where:        
1

( ) Re ( ) ( ) ( )
s

x y
i i j i j j i j

j

h w g w w f w f 


              

wi are the locations of the k boundary samples and s is the total 
number of basis functions. Since the error (5) is quadratic, the 
optimization can be solved by solving a rather small dense (over-
determined) linear system of equations with 2s real variables. 
Once the optimal real coefficients fj

x and fj
y are found, we can 

plug them into  1
( )Re

s

j jj
C z f

 ,obtaining a formula for the desired 
harmonic function h(z) at any interior point z. It is important to 
note that the function h(z) only approximates the given boundary 
conditions. However, we cannot hope for better than this since an 
analytic expression for the Dirichlet problem does not exist (in 
general). Moreover, using this construction we can guarantee that 
h(z) is harmonic in the continuous (as opposed to discrete) sense. 

The reader may have noticed that in order to solve (6), the genera-
lized Cauchy coordinates need to be evaluated on the boundary of 
the domain, where they are singular. We define the values of the 

coordinate functions on ∂Ω to be their limit (in case it exists) 
when approaching the boundary from the interior of Ω: 

( ) lim ( ), ,j jz w
C w C z z w


   

These limits exist everywhere except at the singular vertices. We 
refer to Appendix A for the appropriate formulae. 

6.2 The Hilbert Transform 

We now turn to finding the harmonic conjugate function. The 
main reason why we chose to solve the Dirichlet problem using 
the Cauchy transform can now be revealed. The desired conjugate 
is simply:  1

( ) Im ( )
s

j jj
p z C z f


  . Since the discrete Cauchy basis 

functions are holomorphic, it follows that p(z) is harmonic and 
that h(z) and p(z) are exactly harmonic conjugate functions. We 
thus conclude that the Dirichlet problem and finding a harmonic 
conjugate are two equivalent problems since once we solve for the 
complex coefficients fj , we obtain a closed-form expression for 
h(z) as well  as for p(z). Finally, the discrete Hilbert transform that 

we seek is:       
1

( ) ( )
s

j j
j

z C z f


    

The inverse of the Hilbert transform which takes the harmonic 
function v to the holomorphic function ࣢‐1(z)=v-iu is easily 
obtained by multiplying ࣢ (z) by the complex number i. 

7 The Antiderivative 

In Section 6 we showed how to compute the Hilbert transform 
which enables us to construct a holomorphic function such that its 
real (or imaginary) part coincides with a given real-valued func-
tion along the boundary. Our ultimate goal is to reconstruct a 
conformal map from its prescribed angular factor along the boun-
dary θ(t). Applying the inverse Hilbert transform to θ(t), results in 
the holomorphic function g(z)=Log( f ʹ(z)) from which we can 
evaluate f ʹ(z)=exp(g(z)) anywhere in  and in particular on .  

The next step is to reconstruct the actual mapping f. Even though 
computing f ʹ using the discrete Hilbert transform as described in 
Section 6 guarantees that the approximated f ʹ is holomorphic, its 
antiderivative does not possesses a closed-form expression. How-
ever, using the following observation we can avoid numerical 
“integration” of f ʹ. Since f is holomorphic it can be approximated 
using the discrete Cauchy transform 1

( ) ( )
s

j jj
f z C z d


 . Differen-

tiating with respect to z results in 1
( )( )

s

j jj
D z df z


    where 

 ( ) ( ) /j jD z d C z dz
 is the derivative of the generalized Cauchy 

basis functions, which have a closed-form expression. Following 
the same logic of Section 6, we employ the following discrete 
optimization problem:

 
 

 
1

2

1 1

argmin ( ) ( )
s

j j

k s

i j i j
i jf

f w D w d


 

    (7) 

where wi are the locations of k boundary samples and dj are the 
complex coefficients that we solve for. In contrast to Section 6, 
here the linear system of equations is over the field of complex 
numbers. Once the linear system is solved and the coefficients dj 
are found, they can be plugged into the discrete Cauchy transform 
formula in order to compute f(z) at any arbitrary interior point z. 

The expressions for the first derivative of the generalized Cauchy 
coordinates and their limits when an internal point approaches the 
boundary are given in Appendix A. 
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8 Deformation by Angle Prescription 

Having laid down all the mathematical building blocks for our 
deformation algorithm, we can describe it from the user point of 
view. The user first defines a polygon with n vertices to serve as 
the boundary of the domain and a set of p singular points are se-
lected among the cage vertices. To simplify the user interface, we 
allow the user to prescribe the angular change θ(t) only at the 
singular points rather than on any point on the boundary. Since 
the singular points are considered to be corner points we actually 
have two distinct angles for each one of them, resulting in 2p 
degrees of freedom. The values of θ(t) are then interpolated li-
nearly along the boundary. We give the user the freedom to 
choose between two possible user interfaces. 

8.1 Rotational Handles 

This is the most direct user interface. A rotational handle manipu-
lator is attached to each singular vertex. In addition, the user is 
required to place one anchor handle inside the domain in order to 
fix the global scale and translation degrees of freedom. To control 
the amount of rotation, the user first selects a particular handle. 
Rotating the handle adds the same amount of rotation to the tan-
gent vectors just before and just after the selected corner, which 
results in an overall orientation change at the corner. Dragging the 
handle rather than rotating it causes the two tangent vectors to 
rotate in opposite directions, which has the effect of changing the 
corner angle rather than its orientation. During interaction, the 
system constantly updates the location of the handles to match the 
deformed location of the singular corners. 

8.2 Cage-Based 

Alternatively, the user can manipulate the vertices of the polygon-
al boundary curve (the cage). In this case, all the vertices of the 
cage are considered to be singular. The corner angles are taken to 
be equal to the angle of the edges of the target cage, which results 
in a deformed shape bound by straight lines. Fig. 8 show an ex-
ample of mapping a sinusoidal bar to a triangle. Since the edges of 
the target cage are straight, the image of the bar is a perfect trian-
gle. 

In addition, the user has an additional parameter per edge. This 
can be thought of as a tension parameter. When it has a large val-
ue, the angular change θi

+(t) just after the ith singular vertex equals 

the angular change θi
-
+1(t) just before the (i+1)th singular vertex. 

This results in a constant θ along the edge, so the edge is mapped 
to a straight line in the target image. When tension is low we re-
duce the angles by an amount proportional to the tension parame-
ter. This has the effect of bending the edge to form a circular arc, 
creating a more relaxed conformal map with more moderate varia-
tions in scale. This is demonstrated in Fig. 7. The three degrees of 
freedom can be either prescribed directly at an internal anchor 
point or can be deduced from the vertices of the target cage by 
some heuristic such as finding a scale and translation that mini-
mizes the distance between the target cage and the boundary of 
the target image. 

9 Implementation Details 

During interaction, the user constantly changes the boundary con-
dition θi  i[1, 2p] at the singular vertices which results in imme-
diate visual feedback in the form of the deformed conformal map. 
Since this is an interactive application running in real-time, it is 
advisable to solve the linear systems during runtime as quickly as 
possible, even at the price of a longer preprocessing time. 

 
Figure 7: Deformation using angle prescription: (Left) original 
shape enclosed by a cage. (Top left) all target edges are straight. 
(Top right) Tension is relaxed at all edges. (Bottom left and right) 
Tension is relaxed at only some of the edges. 

The number of basis functions needed in order to achieve good 
approximations depends on the complexity of the domain. Convex 
regions usually require less basis functions while highly concave 
and twisted regions require more. Hence, in practice we usually 
increase the number of basis functions by sampling the original 
edges of the cage, adding some virtual vertices. However, away 
from the singular vertices of the cage we expect that the mapping 
will behave well and will not contain radical changes, so at virtual 
vertices we can make do with the continuous case of generalized 
Cauchy coordinates, keeping the number of basis functions mana-
geable. In contrast, at the singular vertices of the cage we always 
use the discontinuous case of generalized Cauchy coordinates in 
order to allow maximum flexibility. Denote by r the total numbers 
of vertices in the super sampled cage. We have one CEj basis 
function per edge, one CVj basis function per “regular” vertex and 
two basis functions CVj

- and CVj
+ per singular vertex which results 

in totally s=2r+p basis functions. A typical value for p is 4-20 
and a typical value for s is 200. 

Once the user defines a cage with n vertices and a set of p singular 
vertices, the polygon is sampled and refined to have r vertices. 
We then uniformly sample the polygon with k samples, avoiding 
sampling the r virtual vertices, and evaluate the s generalized 
Cauchy coordinates on each sample. Choosing k to be an order of 
magnitude larger than r led to good results in our experiments. 

Next, we construct the real matrix Ck×2s containing the real and 
imaginary parts of the coordinates, φ and –ψ, at each sample in 
interleaved columns. Computing its pseudo-inverse and combing 
every two consecutive rows into a single row of complex numbers 
results in the matrix C +

s×k .We can express the solution to the opti-
mization problem (6) in matrix form: 

 
1 1s s k kf C u
    

uk×1 are the given values of u on the k boundary samples. Since we 
assume that u changes linearly between singular vertices, we can 
further express the samples uk×1 as a matrix-vector product 
uk×1=Sk×2pθ2p×1 where Sk×2p is a “uniform” sampling matrix having 
exactly two non-zero elements in each row corresponding to two 
singular vertices. The rate of change is proportional to the arc 
length. It follows that: 

 
1 2 2 1 2 2 1

2

s s k k p p s p p

s pT

f C S T 
     



 


 

Once the matrix T is computed, we obtain a formula for evaluat-
ing the discrete Hilbert transform at any point z inside : 
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( ) ( ) ( )
s p p s

j ji i i j jij i i j

i z

z C z T C z T 
   

    



  

We denote by ࣢i (z), the ith Hilbert coordinate which has a closed-
form expression. Once the 2p Hilbert coordinates are computed in 
the preprocess step, the Hilbert transform can be computed during 
interaction by a simple matrix-vector multiplication: 

2

1

( ) ( )
p

i i
i

z z 


         (8) 

Since θ is in fact the imaginary part (rather than the real part) of 
the holomorphic function ࣢ (z), we need the inverse Hilbert trans-
form. This is obtained simply by multiplying θ by the complex 
number i before computing (8). 

The 2p Hilbert coordinates are evaluated during the preprocess 
step at the k boundary samples and are stored in a matrix. During 
interaction, the user provides a vector of 2p angles which is mul-
tiplied by the Hilbert coordinates matrix. This results in a new 
vector of k complex numbers. Taking the exponent of each ele-
ment in the vector produce a k-vector of boundary derivatives. 

Our final task is then to construct a conformal map that has those 
derivatives along the boundary. The linear system (7) is also pre-
factored during preprocessing. Finding the optimal complex coef-
ficients is achieved during interaction by a matrix-vector multipli-
cation. Finally, each point z  Ω is mapped to its target position 
using the discrete Cauchy transform. Note that computing the 
generalized Cauchy coordinates at all the internal points and stor-
ing them in a large matrix is also done in preprocessing. 

There are three degrees of freedom that must be fixed. One is due 
to the Hilbert transform which corresponds to a constant addition 
to ϕ and has the geometric interpretation of global scale. The other 
two are due to the fact that the complex matrix containing the 
coordinates of the derivatives has co-rank one. This can be easily 
fixed by augmenting the real matrix Ck×2s and the complex matrix 
of derivatives with one additional row. 

We have implemented our algorithm as a plug-in to Autodesk 
Maya. Computation of the pseudo-inverse matrices required in 
order to solve the linear systems (6) and (7) is done by SVD on 
our Intel i7 processor, using the Intel MKL library. This requires 
up to 15 seconds for our most complex shape. Since our method is 
based on barycentric coordinates, during interaction, we only need 
to perform dense matrix vector multiplications (an “embarrassing-
ly parallel” process). This is done on a Nvidia Quadro FX 5800 
graphics processor. The deformation is computed interactively 
even for huge images, giving the user immediate feedback, which 
is crucial for an effective animation session. 

10 Computing Harmonic Coordinates 

Harmonic coordinates [Joshi et al. 2007] have many useful prop-
erties, making them attractive for many graphics applications such 
as shape deformation and color and data interpolation. They are 
smooth, have the Lagrange (interpolation) property, and repro-
duce constant and linear functions. But their main advantage over 
the celebrated mean-value coordinates [Horman and Floater 2006] 
is that they are non-negative, even for non-convex boundaries. 
This property is especially important for shape deformation. 

On the downside, harmonic coordinates do not possess a closed-
form expression for general boundary shapes. Hence a good nu-
meric approximation is sought. Joshi et al. [2007] compute the 

coordinates by discretizing the entire domain (2D or 3D) into 
piecewise–linear finite elements and solving a discrete Laplace 
equation for these elements. Martin et al. [2008] applied the Me-
thod of Fundamental Solutions [MFS] for computing harmonic 
coordinates on 3D polyhedral domains. The harmonic function is 
constructed as a linear combination of radial basis functions (the 
fundamental solution of the Laplace equation) with a set of real 
coefficients. 

We obtain an alternative derivation for the computation of har-
monic coordinates for simply connected 2D domains. The ith har-
monic coordinate is nothing but the real part of the Hilbert coor-
dinate Re(࣢i (z)). This derivation of harmonic coordinates pos-
sesses the same constant and linear reproduction properties as the 
discrete harmonic coordinates with the additional advantage of 
being continuously harmonic over . Fig. 9 and the accompany-
ing video demonstrates that high quality approximations for har-
monic coordinates can be achieved when the generalized Cauchy 
coordinates are used, even with a very small number of basis 
functions. 

11 Conclusions and Discussion 

We have presented a novel method for 2D shape deformation with 
some guaranteed shape-preserving properties. Our method pro-
duces pure conformal maps, hence local foldovers are completely 
eliminated. We allow the user to augment the shape with a small 
set of singular points along the boundary. 

Supported by a richer subspace spanned by a generalization of the 
complex Cauchy barycentric coordinates, we are able to create 
realistic deformations that have controllable sharp bends. The user 
has the ability to precisely prescribe the angular change along the 
boundary. The main tool is a natural representation for conformal 
maps. We achieve superb image quality and high performance 
thanks to efficient computation of the Hilbert transform, which is 
based on a new set of barycentric coordinates which we called 
Hilbert coordinates. Our method comes with a built-in ability to 
correctly interpolate shapes possessing the same shape-preserving 
properties. This is an important feature missing from all other 
deformation algorithms based on barycentric coordinates. 

The optimization problem that we solve is linear. However, the 
final map is a non-linear function of the boundary angles. Al-
though positional constraints can be added to (7), by doing so, we 
may lose the shape-preservation property (i.e. the map might not 
be injective anymore). An interesting direction for future research 
would be to solve a non-linear optimization problem in order to 
accommodate positional constraints. 

Another direction for future research may be to define energies 
other than (5), optimizing both for orientation and scale con-
straints. Since satisfying both perfectly is impossible, the re-
quirement can be relaxed to achieve a more balanced mapping 
with less scale variations and more local control. 

We believe that Hilbert coordinates might be useful for other 
applications as well. For example, computing the Riemann map of 
a polygon to the unit disk is an important building block in many 
graphics and geometry applications. Initial results show that this 
can be done. Finally, we would like to find an analog to our 
theory in three dimensions, as an immediate extension does not 
seem to be possible. In fact, conformal maps in 3D rarely exist. 
Nonetheless, the theory of quasi-conformal maps may shed some 
light on this subject. 
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Figure 8: Deformation of a bar with sinusoidal boundary into a 
triangle. (top to bottom) Source with a cage having 200 vertices, 
Conformal deformation using exact angle prescription, Result 
using harmonic coordinates (note the shear), Result using regular 
Cauchy coordinates (the shape does not follow the cage edges 
position nor orientation). 
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The first derivative of the generalized Cauchy coordinates: 
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The limit of the first derivative of the generalized Cauchy coordi-
nates when z approaches the boundary: 
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